From 1 - 6 / 6
  • Categories  

    The forest integrrity index is derived by overlaying the human footprint (Venter et al. 2016) on the forest structural condition. The name is consistent with the concept of ecological integrity. Ecological integrity has been defined as, “the system’s capacity to maintain structure and ecosystem functions using processes and elements characteristic for its ecoregion.” (Parks Canada 2008).  This capacity is a result of the climate, soil, topography, biota and other biophysical properties of the ecoregion and the extent to which these properties are not altered by modern human pressures. Consistent with this definition, the forest integrity index is based on on the structural complexity of a stand relative to the natural potential of the ecoregion and level of human pressure. Thus, forest of high integrity are relatively tall, high in canopy cover, older, and with relatively low human pressure.  An increasing number of studies have shown that human pressure in various forms can have negative effects on native species.  Thus, high integrity forests may be uniquely important for conservation because they support species and processes that are require well-developed forests and are sensitive to human activities.  Such forests often also have high economic value and have likely been preferentially converted to more intense human land uses.  Thus, identifying remaining areas of high forest integrity is important for conservation planning.<br><br>Data is provided by Montana State University.<br/><br>License information: <a href "https://creativecommons.org/licenses/by/4.0/">CC-4.0 Attribution</a>.<br/>

  • Categories  

    This dataset provides estimate of the potential increase in soil organic carbon within the top 30 cm of soil in croplands after 20 years, following implementation of better land managment practices under a high sequestration scenario. The per pixel values here take in to consideration the percent of each pixel which is classified as cropland (from the GLC-Share/GLC-02 dataset), and values have been converted to total tonnes of carbon (x 100) per pixel.<br/><br>See: <a href="https://doi.org/10.1038/s41598-017-15794-8">Zomer, R.J., Bossio, D.A., Sommer, R., Verchot, L.V., 2017. Global Sequestration Potential of Increased Organic Carbon in Cropland Soils. Scientific Reports 7, 15554</a>.<br/>For descriptions of sequrestion scenarions see: <a href="https://doi.org/10.1016/j.jenvman.2014.05.017">Sommer, R., Bossio, D., 2014. Dynamics and climate change mitigation potential of soil organic carbon sequestration. Journal of Environmental Management 144, 83–87</a>.<br/>

  • Categories  

    The forest structural condition index is derived from the University of Maryland canopy cover, canopy height, and time since forest loss data sets. The index spans from short, open-canopy, recently disturbed forests to tall, closed canopy forests that have not been disturbed with the last 14 years. Forest stature and canopy cover are products of both the biophysical potential of a local site and of disturbance history. The tallest, most dense forests are found in settings with favorable climate and soils but with low levels if natural or human disturbance. Such forests have been shown to support high levels of biodiversity, store high levels of carbon, and be more resilient to climate variability. Our maps of forest structural condition are the first to identify locations in the humid tropics of tall, dense forests resulting from high biophysical potential and low disturbance rates.<br><br>Data are provided by the Montana State University for South America, Africa and Asia separately, and have been merged into a single dataset here.<br><br>License information: <a href "https://creativecommons.org/licenses/by/4.0/"> CC-4.0 Attribution</a>.<br/>

  • Categories  

    This dataset provides estimate of the potential increase in soil organic carbon within the top 30 cm of soil in croplands after 20 years, following implementation of better land managment practices under a medium sequestration scenario. The per pixel values here take in to consideration the percent of each pixel which is classified as cropland (from the GLC-Share/GLC-02 dataset), and values have been converted to total tonnes of carbon (x 100) per pixel.<br/><br>See: <a href="https://doi.org/10.1038/s41598-017-15794-8">Zomer, R.J., Bossio, D.A., Sommer, R., Verchot, L.V., 2017. Global Sequestration Potential of Increased Organic Carbon in Cropland Soils. Scientific Reports 7, 15554</a>.<br/>For descriptions of sequrestion scenarions see: <a href="https://doi.org/10.1016/j.jenvman.2014.05.017">Sommer, R., Bossio, D., 2014. Dynamics and climate change mitigation potential of soil organic carbon sequestration. Journal of Environmental Management 144, 83–87</a>.<br/>

  • Categories  

    The forest integrrity index is derived by overlaying the human footprint (Venter et al. 2016) on the forest structural condition. The name is consistent with the concept of ecological integrity. Ecological integrity has been defined as, “the system’s capacity to maintain structure and ecosystem functions using processes and elements characteristic for its ecoregion.” (Parks Canada 2008).  This capacity is a result of the climate, soil, topography, biota and other biophysical properties of the ecoregion and the extent to which these properties are not altered by modern human pressures. Consistent with this definition, the forest integrity index is based on on the structural complexity of a stand relative to the natural potential of the ecoregion and level of human pressure. Thus, forest of high integrity are relatively tall, high in canopy cover, older, and with relatively low human pressure.  An increasing number of studies have shown that human pressure in various forms can have negative effects on native species.  Thus, high integrity forests may be uniquely important for conservation because they support species and processes that are require well-developed forests and are sensitive to human activities.  Such forests often also have high economic value and have likely been preferentially converted to more intense human land uses.  Thus, identifying remaining areas of high forest integrity is important for conservation planning.<br><br>Data is provided by Montana State University.<br/><br>License information: <a href "https://creativecommons.org/licenses/by/4.0/">CC-4.0 Attribution</a>.<br/>

  • Categories  

    The forest integrrity index is derived by overlaying the human footprint (Venter et al. 2016) on the forest structural condition. The name is consistent with the concept of ecological integrity. Ecological integrity has been defined as, “the system’s capacity to maintain structure and ecosystem functions using processes and elements characteristic for its ecoregion.” (Parks Canada 2008).  This capacity is a result of the climate, soil, topography, biota and other biophysical properties of the ecoregion and the extent to which these properties are not altered by modern human pressures. Consistent with this definition, the forest integrity index is based on on the structural complexity of a stand relative to the natural potential of the ecoregion and level of human pressure. Thus, forest of high integrity are relatively tall, high in canopy cover, older, and with relatively low human pressure.  An increasing number of studies have shown that human pressure in various forms can have negative effects on native species.  Thus, high integrity forests may be uniquely important for conservation because they support species and processes that are require well-developed forests and are sensitive to human activities.  Such forests often also have high economic value and have likely been preferentially converted to more intense human land uses.  Thus, identifying remaining areas of high forest integrity is important for conservation planning.<br><br>Data is provided by Montana State University.<br/><br>License information: <a href "https://creativecommons.org/licenses/by/4.0/">CC-4.0 Attribution</a>.<br/>